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Abstract�This paper shortly describes a novel full-wave approach
to the analysis of boxed planar passive MMICs. The analysis takes
into account both the losses in the substrate and in the metallization.
Like in the standard SDA the analysis is performed by applying the
Method of the Moments in the spectral domain, but the standard algo-
rithm is modi"ed according to the philosophy of the Boundary-Integral
Resonant-Mode-Expansion (BIRME) method. Like in frequency-time
domain modeling based on Finite Difference or Finite Element meth-
ods, this modi"cation leads to obtain the pole expansion of the admit-
tance matrix in the s-plane by solving a linear matrix eigenvalue prob-
lem. With respect to "nite methods the implementation of the integral
approach described in this paper results in much shorter computer
times and requires much smaller memory resources. One example
demonstrates the advantage of the method.

I. INTRODUCTION

Many frequency- or time-domain methods are available
for the full-wave analysis of passive MMICs. Using these
methods a frequency- or a time-response is extrapolated
from a collection of samples obtained by repeated anal-
yses carried-out at many frequencies or times. Recently,
more sophisticated methods have been proposed which lead
to the simultaneous modeling in the Frequency- and Time-
Domain (F/TD). In these methods a single calculation yields
the mathematical model of a circuit, in the form of the pole
expansion of some parameters in the s-domain. Any kind of
frequency or time response can be deduced from this model,
to any degree of resolution.
F/TD modelling is normally based on the discretization

of the Maxwell equations [1] [2], which results into a state-
variable formulation of the system equations. This formu-
lation permits one to "nd the pole expansion of some cir-
cuit matrix by solving a linear eigenvalue problem, just as
in the F/TD modelling of VLSI circuitry [3]. Some years
ago, introducing a new method for the wideband modelling
of 2D planar circuits [4], we presented an unusual integral
approach which leads to a similar algorithm. Also this algo-
rithm is based on the determination of the pole expansion by
the solution of a linear eigenvalue problem; however, with
respect to the aforementioned methods, it has great addi-
tional advantages in terms of computing time and memory
usage.
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Fig. 1. A boxed microstrip circuit
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Fig. 2. Metallization and gaps

Recently, in two preliminary conference papers [5] [6],
we showed that a similar philosophy can be followed for
the F/TD modelling of 2.5D multilayer microstrip circuits.
In these papers we reported a simpli"ed analysis, which as-
sumed ideal conductors. In the present paper we outline a
more re"ned version of the method, including the effect of
conductor losses. This inclusion implies signi"cant modi"-
cations of the theory.

II. OVERVIEW OF THE THEORY

We consider an arbitrarily shaped microstrip circuit en-
closed by a conducting box (Fig. 1). The shadowed area Ω
in Fig. 2 represents the metallization and includes the gaps
t1, t2, . . . , tK where the �gap-voltages� v1, v2, . . . , vK are
applied. The metallization is very thin and is embedded in a
layered mediumwhich includes some semiconducting mate-
rial (ε = ε0εr+σ/jω, µ = µ0). The losses in the metalliza-
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tion are taken into account by considering a sheet impedance
Z .
Denoting by ~J = ~J(x, y) the current density over the

metallization, the currents at the ports are given by:

ik =
∫
tk

~J · ~nk dtk (k = 1, 2, . . . , K) (1)

The tangential electric "eld over the region Ω satis"es:

~Etang = −
K∑
k=1

vkδk(x, y)~nk + Z ~J(x, y) (x, y ∈ Ω) (2)

where the summation represent the "eld applied to the gaps
(δk denotes a delta-function supported by tk) and the other
term is the "eld due to the "nite conductivity of the metal-
lization. On the other hand we can write:

~Etang = −
∑
n,p

Z ′npJ̃
′
np~e
′
np(x, y)−

∑
n,p

Z ′′npJ̃
′′
np~e
′′
np(x, y) (3)

where: ~enp represents the (normalized) electric mode vec-
tors of the rectangular waveguide of dimensions a , b (see
Fig. 2); the prime and double prime denote quantities re-
lated to TE and TM modes, respectively; Znp denotes a
modal impedance of the layered waveguide, short-circuited
at z = 0 and z = h, as seen from the plane of the metalliza-
tion; coef"cients J̃np denote the spectral components of ~J ,
with respect to mode vectors (J̃np =

∫
Ω

~J · ~enp dx dy). The
impedances are transcendental functions of the frequency,
which can be determined either in closed form or in the form
of pole expansions [7].
The spectral components of the current could be deter-

mined by the MoM solution of the equation obtained on
substitution of (3) into (2). It is easily veri"ed that, using
the closed form of the impedances, this procedure is equiv-
alent to the standard SDA.
The focal point of the modi"ed approach described in this

paper is the use of the so-called �BI-RME� representation of
the "eld, which is obtained by introducing into (3) the pole
expansion of the modal impedances. As discussed in [5]
(case of two layers) and in [6] (case of many layers), we can
write:

~Etang=−
∑
n,p

jωS ′npJ̃
′
np~e
′
np

−
∑
n,p

(
R ′′np + jωS ′′np +

H∑
h=1

x ′′nph
jω + ξnph

)
J̃ ′′np~e

′′
np

−jω
∑
n,p

∑
C

(
a ′npq

√
z ′np + a ′npq

√
z′ ∗npq

)
~e ′np

−jω
∑
n,p

∑
C

(
a ′′npq

√
z ′′npq + a ′′npq

√
z′′ ∗npq

)
~e ′′np (4)
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where:

a ′npq =
ω
√

z ′npq J̃ ′np
ω ′npq − ω

a ′npq =
ω
√

z′ ∗npq J̃ ′np
−ω′ ∗npq − ω

a ′′npq =
ω
√

z ′′npq J̃ ′′np
ω ′′npq − ω

a ′′npq =
ω
√

z′′ ∗npq J̃ ′pnp

−ω′′ ∗npq − ω

(5)

In these equations:
• the quantities (5) are the �amplitudes� of the resonant
modes (TEnpq or TMnpq) of the layered box, and the pairs
(ωnpq,−ω∗npq) are the corresponding resonating frequen-
cies; these frequencies correspond to poles of the modal
impedances and the quantities z ′npq and z ′′npq are their
residues; due to the losses in the medium, the poles ωnpq
are slightly displaced upward from the real axis (Fig. 3);
• the summations denoted by ΣC are truncated series,
which take into account the only poles lying inside some
circle C of radius suf"ciently larger than the maximum fre-
quency (ωmax) in the band of interest (Fig. 3) ; the accuracy
of the representation (4) increases with the radius ζωmax,
where ζ is an �accuracy factor� larger then 1; 1

• further poles (jξnp1, jξnp2, . . . , jξnpH ) are placed on the
imaginary axis; they belong to the modal impedances Z ′′np
and their residues are given by the real quantities x ′′np; their
number only depends on the number of conducting layers
and in all practical cases (insulating and slightly conducting
layers) these poles are very close to the origin;
• R ′′np, S ′np, S ′′np are real quantities, obtained by consid-
ering the "rst terms of the power expansion of the modal
impedances around the origin [6].
The acronym �BI-RME� is used for the "eld representa-

tion (4), because it includes Boundary Integrals (the spectral
components of ~J , explicitly appearing in the "rst two terms)
and Resonant Mode Expansions (the last two summations).

The theory of the method can be summarized as follows:
STEP 1: The current density is approximated by the formula

~J =
M ′∑
m=1

cm~um(x, y) +
M ′′∑
m=1

dm ~wm(x, y) (6)

1It is stressed that, with increasing the order of the modes, the resonant
frequencies depart from the origin and go outside of C. As a consequence,
some lower-order modes only are taken into account in the summations.
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where {~um} and {~wm} are sets of suitable two-dimensional
vector basis-functions de"ned on Ω and the weights cm, dm
are unknown. All basis functions have zero normal compo-
nent at the edges of the metallization; furthermore, functions
~um are solenoidal (∇T · ~um = 0), and functions ∇T · ~wm
are linearly independent. We have:

J̃ ′np=
M ′∑
m=1

cmũ ′mnp+
M ′′∑
m=1

dmw̃ ′mnp J̃ ′′np=
M ′′∑
m=1

dmw̃ ′′mnp

where an evident symbolism is used to denote the spectral
components of the basis functions with respect to TE and
TM mode vectors (note that ũ ′′mnp = 0).
STEP 2: Equation (4) is substituted into (2) and the resulting
equation is discretized by using ~um and ~vm as test functions
(Galerkin's method). The following approximation is used:

∑
np

H∑
h=1

w̃ ′′`npx
′′
nphw̃

′′
mnp

jω + ξnph
≈ T`m

jω + ξ̂`m

where:

T`m=
∑
np

H∑
h=1

w̃ ′′`npx
′′
nphw̃

′′
mnp

ξ̂`m=
1

T`m

∑
np

H∑
h=1

ξnphw̃
′′
`npx

′′
nphw̃

′′
mnp

For any pair of w- functions, this approximation permits us
to substitute a single pole to the cluster of poles {jξnph}
located near the origin. The approximation is useful for re-
ducing the order of the problem and it is very good apart
from the range of very low-frequencies.
STEP 3: After introducing the auxiliary variables

b` =
M ′′∑
m=1

T`mdm

jω + ξ̂`m
(7)

we have three sets of equations: one obtained by the
Galerkin's method applied to (2), and the others obtained
from (5) and (7). These equations relate the a-, b-, c-
and d-variables, whose number is N = M ′ + 2M ′′ +
no. of resonant frequencies included in C. This system
can be represented by a matrix equation of the type:

[A + Z(s)B− sC] x = Dv (s = jω) (8)

where x is the N -dimensional vector of the variables, and
A, B, C, D are matrices independent of s. A, B, C are
complex symmetric matrices (N×N ) andD is a real matrix
(N ×K). The surface impedance is given by [8]:

Z(s) = (sµ0/σm)1/2coth
(

(sµ0σm)1/2 t
)

(9)

where t and σm are the thickness and the conductivity of the
metallization, respectively.
STEP 4: Starting from (1) and (6) we "nd the current vector
in the form i = DTx. Then, using (8) we "nd the admittance
matrix in the form:

Y = DT [A + Z(s)B− sC]−1 D (10)

STEP 5: The inverse of the matrix is "rst determined by
replacing the surface impedance with the low-frequency re-
sistanceR = Z(0) = 1/(σmt). We "nd:

[A +RB− sC]−1 = −
N∑
n=1

xT
nxn

s− λn
(11)

where λn and xn are the eigenvalues and the eigenvectors
obtained as solutions of the generalized linear eigenvalue
equation:

(A +RB− λC) x = 0 (12)

STEP 6: The eigenvalues laying inside the circle C (which
are the most important) are corrected by a perturbation tech-
nique, to take into account the small difference between Z
andR. The corrected eigenvalues are given by:

λ ′n = λn − [Z(λn)−R] xT
nBxn (13)

In conclusion we "nd the pole expansion of the admittance
matrix:

Y = −
∑
C

DTxT
nxnD

s− λ ′n
−
∑
other

eigenvalues

DTxT
nxnD

s− λn
(14)

STEP 7: Comparing (10) and (14) we obtain:

−
∑
other

eigenvalues

DTxT
nxnD

s− λn

= DT

(
[A + Z(s)B− sC]−1 +

∑
C

xT
nxn

s− λ ′n

)
D

Obviously, this function is analytic in C, and it can be
power-expanded around the origin. If the accuracy factor
is suf"ciently large (e.g., ζ > 2.5), the "rst two term of the
expansion are suf"cient to obtain a good approximation of
the function in the frequency band of interest. We obtain:

Y ≈ −
∑
C

DTxT
nxnD

s− λ ′n
+ G + sF (15)

where:

G = DT

[
(A +RB)−1 −

∑
C

xT
nxn
λ ′n

]
D
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F = DT
[
(A +RB)−1(C− Ż(0)B)(A +RB)−1

−
∑
C

xT
nxn
λ′ 2n

]
D

(Ż(0) = jtµ0/3). Note that using (15) does not require
the calculation of the eigensolutions of (12) outside C. The
calculation of (A +RB)−1 does not require any additional
computational effort, because it is already required for the
solution of (12).

III. NUMERICAL RESULTS

We used the described algorithm for the F/TD modelling
of the coupled-line "lter shown in Fig. 4. We considered
a substrate consisting of a 100 µm Si layer (εr = 11.76,
σ = 1/30 S/m) and a 5 µm SiO2 layer (εr = 3.9, σ = 0).
The thickness of the metallization was t = 2 µm and its
condyctivity was σm = 107 S/m. The "lter was designed
to feature a pass-band around 33 GHz with a 5% bandwidth.
The maximum frequency of interest was 70 GHz, in order
to include the "rst replica of the pass-band.
In the analysis we assumed an accuracy factor ζ = 2.5,

and we used u and w basis functions obtained as suitable
combinations of rectangular rooftops [6]. We considered a
total number of 241 basis functions (94 u-functions + 147
w-functions). As evidenced in Fig. 5, the results of our anal-
ysis are in very good agreement with those of a commercial
solver based on a standard SDA approach (EMSightTM, in-
cluded in Microwave Of"ce).
Our method permitted to obtain the frequency response

of the "lter in about 1/4 of the time required by the standard
SDA, even though the numerical procedure for "nding the
eigenvalue was not yet optimized. Moreover, the availability
of the mathematical model permitted us to plot the responses
with a great detail.
In the case of a lossless metallization the BI-RME algo-

rithm required a computer time more than one order of mag-
nitude shorter than the time required with the standard SDA
[6]. In that case some manipulations of the matrix equations
permitted us to reduce substantially the order of the eigen-
value problem. We are con"dent that a similar procedure
is possible also in the case discussed in the present paper,
thus permitting us to obtain the same performance as in the
lossless case.
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